Clustering Data by Melting
نویسنده
چکیده
We derive a new clustering algorithm based on information theory and statistical mechanics, which is the only algorithm that incorporates scale. It also introduces a new concept into clustering: cluster independence. The cluster centers correspond to the local minima of a thermodynamic free energy, which are identified as the fixed points of a one-parameter nonlinear map. The algorithm works by melting the system to produce a tree of clusters in the scale space. Melting is also insensitive to variability in cluster densities, cluster sizes, and ellipsoidal shapes and orientations. We tested the algorithm successfully on both simulated data and a Synthetic Aperture Radar image of an agricultural site with 12 attributes for crop identification.
منابع مشابه
Scale Space Exploration For Mining Image Information Content
Images are highly complex multidimensional signals, with rich and complicated information content. For this reason they are difficult to analyze with a specific automated approach. However, a hierarchical representation is helpful for understanding image content. In this paper, we describe an application of a scale-space clustering algorithm (melting) for exploration of image information conten...
متن کاملA Clustering Approach by SSPCO Optimization Algorithm Based on Chaotic Initial Population
Assigning a set of objects to groups such that objects in one group or cluster are more similar to each other than the other clusters’ objects is the main task of clustering analysis. SSPCO optimization algorithm is anew optimization algorithm that is inspired by the behavior of a type of bird called see-see partridge. One of the things that smart algorithms are applied to solve is the problem ...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural Computation
دوره 5 شماره
صفحات -
تاریخ انتشار 1993